A priori Lrho error estimates for Galerkin approximations to porous medium and fast diffusion equations

نویسندگان

  • Dongming Wei
  • Lew Lefton
چکیده

Galerkin approximations to solutions of a Cauchy-Dirichlet problem governed by the generalized porous medium equation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Priori L Error Estimates for Galerkin Approximations to Porous Medium and Fast Diffusion Equations

Galerkin approximations to solutions of a Cauchy-Dirichlet problem governed by the generalized porous medium equation

متن کامل

Discontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates

Abstract. For elliptic interface problems in two and three dimensions, this paper studies a priori and residual-based a posteriori error estimations for the Crouzeix–Raviart nonconforming and the discontinuous Galerkin finite element approximations. It is shown that both the a priori and the a posteriori error estimates are robust with respect to the diffusion coefficient, i.e., constants in th...

متن کامل

A Posteriori Error Estimates for Mixed Finite Element Galerkin Approximations to Second Order Linear Hyperbolic Equations

In this article, a posteriori error analysis for mixed finite element Galerkin approximations of second order linear hyperbolic equations is discussed. Based on mixed elliptic reconstructions and an integration tool, which is a variation of Baker’s technique introduced earlier by G. Baker (SIAM J. Numer. Anal., 13 (1976), 564-576) in the context of a priori estimates for a second order wave equ...

متن کامل

Full Discretization of the Porous Medium/fast Diffusion Equation Based on Its Very Weak Formulation

Abstract. The very weak formulation of the porous medium/fast diffusion equation yields an evolution problem in a Gelfand triple with the pivot space H. This allows to employ methods of the theory of monotone operators in order to study fully discrete approximations combining a Galerkin method (including conforming finite element methods) with the backward Euler scheme. Convergence is shown eve...

متن کامل

Error Estimates for Linear PDEs Solved by Wavelet Based Taylor-Galerkin Schemes

In this paper, we develop a priori and a posteriori error estimates for wavelet-Taylor– Galerkin schemes introduced in Refs. 6 and 7 (particularly wavelet Taylor–Galerkin scheme based on Crank–Nicolson time stepping). We proceed in two steps. In the first step, we construct the priori estimates for the fully discrete problem. In the second step, we construct error indicators for posteriori esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1999